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Performance of Forced-Alignment
Algorithms on Children’s Speech
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Julie Liss,b and Katherine C. Hustada,d
Purpose: Acoustic measurement of speech sounds requires
first segmenting the speech signal into relevant units (words,
phones, etc.). Manual segmentation is cumbersome and time
consuming. Forced-alignment algorithms automate this
process by aligning a transcript and a speech sample. We
compared the phoneme-level alignment performance of
five available forced-alignment algorithms on a corpus of
child speech. Our goal was to document aligner performance
for child speech researchers.
Method: The child speech sample included 42 children
between 3 and 6 years of age. The corpus was force-aligned
using the Montreal Forced Aligner with and without speaker
adaptive training, triphone alignment from the Kaldi speech
recognition engine, the Prosodylab-Aligner, and the Penn
Phonetics Lab Forced Aligner. The sample was also manually
aligned to create gold-standard alignments. We evaluated
alignment algorithms in terms of accuracy (whether the interval
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covers the midpoint of the manual alignment) and difference
in phone-onset times between the automatic and manual
intervals.
Results: The Montreal Forced Aligner with speaker adaptive
training showed the highest accuracy and smallest timing
differences. Vowels were consistently the most accurately
aligned class of sounds across all the aligners, and alignment
accuracy increased with age for fricative sounds across the
aligners too.
Conclusion: The best-performing aligner fell just short of
human-level reliability for forced alignment. Researchers can
use forced alignment with child speech for certain classes
of sounds (vowels, fricatives for older children), especially
as part of a semi-automated workflow where alignments are
later inspected for gross errors.
Supplemental Material: https://doi.org/10.23641/asha.
14167058
Research on children’s speech production requires
analyses on large corpora due to the developmen-
tal and individual variability in production. The

traditional workflow for acoustic analysis at the phoneme
level—manually annotating recordings for words and pho-
nemes as well as repeatedly playing segments of audio and
tweaking boundaries—is time consuming. For example, 1
min of annotation for a 2-s token (a conservative estimate)
would represent an annotation to speech duration ratio of 30.
As phonetic corpora grow ever larger, manual annotation
cannot scale for these larger scale data sets. We posit that
manual annotation is a rate-limiting factor in gaining a deep
understanding of the ways in which phoneme production
develops in children.

In this work, our aim is to evaluate the accuracy of
several forced-alignment algorithms that automatically map
the words and phones onto intervals of speech by comparing
the algorithms to trained human aligners. These algorithms
use models similar to those used in speech recognition (a pro-
nunciation dictionary of words and a statistical model of
acoustic patterns), a speech sample, and a transcript of what
was said in the sample to create (force) an alignment of
phone labels and audio intervals. In acoustic–phonetics,
we routinely annotate/segment recordings into meaningful
intervals (turns, utterances, words, phones, etc.) and take
measurements of those intervals (durations, frequencies,
etc.). In this respect, alignment is fundamental for down-
stream analysis of speech data, both at the segmental level
(e.g., measuring the spectrum of a particular fricative) and
at the suprasegmental level (e.g., measuring speech rate;
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Shinozaki & Furui, 2003; Tu et al., 2018; Yuan & Liberman,
2011). Therefore, algorithms that accurately align children’s
speech would enable researchers to answer a variety of ques-
tions on a data scale that has not been feasible to date.

Although there are several popular forced alignments
in the literature, broadly speaking, they all use the same fun-
damental underlying statistical machinery: (a) modeling the
distribution of the low-level acoustics associated with the
speech and (b) modeling the temporal relationship between
phonemes (Keshet, 2018). The existing state-of-the-art ap-
proaches differ in how this modeling is done. For example,
some of the algorithms do not directly account for co-
articulation and model the phonemes without consideration
for context (Gorman et al., 2011; Yuan & Liberman, 2008,
2011); whereas others use triphone models that consider the
sounds that precede and follow the phoneme of interest
(McAuliffe et al., 2017; Povey et al., 2011). More recent
approaches allow for adaptation of pretrained acoustic models
to account for differences in acoustics between the way the
model was trained (e.g., on adult speech) and the way the
model is used after training (e.g., on children’s speech). In
Table 1, we list the algorithms in our consideration set and
provide a brief description of each one.

Previous work on the performance of forced-alignment
algorithms has largely focused on adult speech (MacKenzie
& Turton, 2020). However, child speech is different from
adult speech: Children’s speech anatomies are still develop-
ing into adult proportions, and their articulatory abilities
and phonological representations are immature and more
variable than adult speech. Thus, automatic speech recognition
systems have larger error rates on child speech (see review
in Beckman et al., 2017). Forced-alignment algorithms are
built on similar acoustic models to those used in automatic
speech recognition systems; as such, these aligners will likely
be less accurate for child speech than adult speech.
Table 1. Comparison of the forced-alignment algorithms under considerat

Algorithm Engine Alignment

P2FA
(Yuan &

Liberman,
2008)

HMM-GMM on PLP
features. HTK backend.

Monophone

Prosodylab
(Gorman

et al., 2011)

HMM-GMM on MFCC
features. HTK backend.

Monophone

Kaldi
(Povey et al.,

2011)

HMM-GMM on MFCC
features. Kaldi backend.

Two passes:
monophone, triphone

MFA-No-SAT
(McAuliffe

et al., 2017)

HMM-GMM on MFCC
features. Kaldi backend.

Two passes:
monophone, triphone

MFA-SAT
(McAuliffe

et al., 2017)

HMM-GMM on MFCC
features. Kaldi backend.

Three passes: monophone,
triphone,
speaker-adapted triphone

Note. P2FA = Penn Phonetics Lab Forced Aligner; HMM = Hidden Markov
predictor; HTK = Hidden Markov Model Toolkit (Young et al., 2015); MFCC
No-SAT = No speaker adaptive training; SAT = speaker adaptive training.
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One notable recent test of forced alignment on child
speech is the work by Knowles et al. (2018), which evalu-
ated how well the Prosodylab-Aligner performed on children’s
speech while manipulating different alignment parameters
(training data, pronunciation dictionary, corpus, etc.). For
the default training set (adult speech), the accuracy of sibi-
lant alignments was less than 50%. For stops and vowels,
alignment accuracy was between 60% and 88% for one of
the corpora and all under 50% for the other. Alignment ac-
curacy improved with age so that the default Prosodylab
acoustic model yielded more accurate alignments on older
children. As expected, training the acoustic model on child
speech improved alignment accuracy when compared against
the default adult-speech acoustic model.

The work from Knowles et al. (2018) leaves open the
question of how different alignment approaches (e.g., tri-
phone alignment and alignment based on speaker adaptive
triphone models) fare on child speech. In this study, we took
a broader view and tested the performance of several pub-
licly available alignment algorithms (see Table 1) on speech
from a probe used to evaluate speech in children. We focus
on speech samples from children ages 3 to 6 years old and
evaluate five forced-alignment algorithms along two related
dimensions: accuracy and onset-time differences.

The output of forced-alignment systems can be eval-
uated in a variety of ways, and the metric of interest is ap-
plication specific. As a result, we aim to answer several
research questions that holistically capture the performance
of an aligner. These include:

1. What was the accuracy of the aligners relative to gold-
standard manual alignments?

2. Which classes of sounds had the most accurate align-
ment? How did each aligner perform on each class of
sounds?
ion.

English training set Remark

25 hr of U.S. Supreme
Court oral arguments

Not trainable.

10 hr laboratory-recorded North
American speech

Librispeech (Panayotov et al.,
2015): 1,000 hr of adult-read
audiobooks

Kaldi is a speech recognition
engine but recipes are
available for forced alignment.

Librispeech Automates Kaldi alignment
recipes. Developed by
same lab as Prosodylab.

Librispeech

model; GMM = Gaussian mixture model; PLP = perceptual linear
= Mel-frequency cepstral coefficient; MFA = Montreal Forced Aligner;
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3. Did children’s ages predict aligner performance?

4. How did human–human and human–automatic
interrater agreement compare?

5. What was the distribution of phone-onset time differ-
ences for the aligners?

This comparative evaluation of performance between
the five alignment algorithms will provide immediate value
for both clinical speech researchers and technologists. We
expect that the results presented here will help inform the
analysis decisions that researchers make in other child speech
studies. In addition, the results will provide a target against
which speech technologists can compare new algorithms they
develop for alignment.
Method
Participants

A total of 42 typically developing children (21 girls,
21 boys) contributed speech samples for this study. Children
met the following criteria: (a) American English as the pri-
mary language in the home, (b) hearing within normal limits
as indicated by parent report and passing a pure-tone hear-
ing screening or distortion product otoacoustic emission
screening bilaterally, (c) speech within normal limits as indi-
cated by standardized articulation test scores, and (d) language
within normal limits as indicated by standardized language
test scores.

The subset of children examined in this study was se-
lected based on their chronological age. Children were ran-
domly selected from the following age bands: 36–47 months
(n = 10), 48–59 months (n = 10), 60–71 months (n = 12),
and 72–83 months (n = 10). Half of the children in each age
band were boys and half were girls. Children in this sample
represented the local community, which is skewed toward
White middle-class and upper middle-class families.
Experimental Task
Children produced a standard set of speech stimuli from

the Test of Children’s Speech (TOCS+; Hodge & Daniels,
2007), administered by a research speech-language patholo-
gist in a sound-attenuating suite. In an elicitation task
involving a recorded model played on an iPad, children
produced a series of single words and a series of multiword
utterances that were the same for each child. Single-word
stimuli were 38 individual words, including all items from
the TOCS-30 word probe (Hodge & Daniels, 2007). Multi-
word stimuli were 60 sentences ranging from two to seven
words (10 items of each sentence length). The multiword
protocol started with the 10 two-word utterances and advanced
to the 10 three-word utterances and so on. Some of the youn-
ger children were not able to produce all 10 utterances of a
given length, so the elicitation protocol was stopped if a
child could not produce at least five of the 10 utterances. For
example, if a 3-year-old child only produced four of the five-
word utterances, then none of the five-word utterances were
Downloaded from: https://pubs.asha.org Jennifer Soriano on 04/23/2021,
included. We accepted all child productions of the words,
regardless of whether they correctly articulated the word or
not, as our goal was to assess aligner performance on actual
child speech. Lexical errors (additions, substitutions, omis-
sions, transposition of whole words) were also accepted; we
updated the utterance transcript as needed to match the
words that the child said. Recordings of children were made
using a digital audio recorder (Marantz PMD 570) at a 44.1-
kHz sampling rate (16-bit quantization) and a condenser
studio microphone (Audio-Technica AT4040) positioned
next to each child using a floor stand. The level of the sig-
nal was monitored and adjusted on a mixer (Mackie 1202
VLZ) to obtain optimized recordings and to avoid peak
clipping. Individual utterances were extracted from each
recording into separate audio files, so that there was one file
per TOCS item per child. Audio files ranged in duration
from 0.7 to 6.9 s with a mean duration of 2.1 s.

Materials and Procedure
Forced aligners. Table 1 describes the five forced-

alignment algorithms under consideration. We selected these
aligners because of their prior use in the literature and their
availability for public use. However, we note that this selec-
tion is not exhaustive. We used each aligner’s default acous-
tic models and configurations.

Manual alignment. Manual alignments of boundaries
for all phonemes produced by each child were made by
two research assistants, one who was a graduate student
in speech-language pathology and one who was a certified
speech-language pathologist. We considered these human
alignments as determined by either of the two research as-
sistants to be the “gold standard.” Both research assistants
had specialized training in acoustic–phonetics that was specific
to this project, involving extensive experience in evaluating
child speech samples using acoustic tools. The two researcher
assistants divided the children’s samples between themselves,
but overlapped on 10% of the data (four children) so that
interrater reliability could be assessed. Most alignments took
approximately between 1 and 5 min per file.

To make gold-standard alignments, research assistants
manually corrected the output from the Prosodylab-Aligner,
which involved listening to each speech sample produced by
each child and performing manual boundary adjustments on
Praat textgrids (Boersma & Weenink, 2015) for each of the
automatically generated phoneme boundaries. We chose to
correct prepopulated alignments rather than create align-
ments de novo because of the tremendous time demands of
creating versus adjusting alignments. We used the Prosody-
lab as the starting point because of prior experience with it.
Research assistants calibrated their judgments of phoneme
boundaries by working on the same sets of speech samples,
making separate judgements, which were then compared
as part of a training set. This training set included two chil-
dren (a 6-year-old followed by a 3-year-old). Differences be-
tween raters, as well as questions that arose, were discussed
with the first author and among the research assistants.
Across children and utterances, there were 34,205 manually
Mahr et al.: Forced Alignment of Child Speech 3
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aligned phones. Due to pronunciation dictionary differences
and transcription errors (i.e., the transcript for alignment
not matching the child’s production), some phones could
not be compared against manual alignments (~2% of phones
excluded).

Interrater reliability involved having both judges eval-
uate and adjust phoneme boundaries independently for 10%
of the sample (all utterances produced by four different
children). We then compared accuracy and alignment timing
differences for the two human raters. We report interrater
reliability in the results section, where we use this index
of human agreement as a benchmark for comparison of
aligner performance.

Outcome Variables
Two outcome variables were of interest for this study.

These were alignment accuracy and alignment timing differ-
ences. We evaluated aligner accuracy using the same crite-
rion as Knowles et al. (2018). Two intervals match if the
boundaries of an automatic (forced) alignment interval con-
tain the midpoint of the manual interval. Figure 1 shows
the alignments for a single token with examples of matching
alignments. This criterion provides a gross measure of accu-
racy: Did the aligner “find” the same sound as the manual
alignment? In some cases, one force-aligned phone interval
can be trivially accurate by spanning with the width of sev-
eral phones, but that wide interval causes a mismatch in the
other automatic intervals relative to the manual alignments.
We measured alignment timing differences based on abso-
lute difference in phone-onset times between automatic and
manual alignments. Because most onset times were also the
offset time of a prior phone—for example, in /bi/, the onset
of [i] is the offset of [b]—we considered only the onset times
for this comparison. We examined both metrics across all
phones and within four classes of sounds: vowels (/i, ɪ, e, ɛ,
æ, ɑ, ɔ, o, ʊ, u, ə/ʌ, ɚ/ɜ˞, aɪ, aʊ, ɔɪ/), fricatives (/f, v, θ, ð, s,
z, ʃ, h/; i.e., all but /ʒ/), plosives (/p, b, t, d, k, g/), and sounds
from other classes (affricates /tʃ, dʒ/, liquids /l, ɹ/, nasals /m,
n, ŋ/, and glides /w, j/).

Statistical Analyses
We modeled the accuracy of the aligners with a logis-

tic mixed-effects regression model. The outcome variable
was aligner accuracy—that is, whether an interval produced
by an aligner overlapped with the midpoint of the gold-
standard, human-aligned interval. Accuracy is a binary mea-
surement, so we used a logistic regression model. We report
accuracy estimates using percentages (rather than propor-
tions). Our baseline model included population-average
(fixed) effects for aligner, sound class, and aligner-by-sound
class interaction. These effects estimated how accuracy on
average changed as a function of aligner and sound class.
The model’s varying (random) effects included by-child in-
tercepts and by-child-by-aligner intercepts. These intercepts
allowed children to vary in their overall alignment “diffi-
culty” (by-child intercepts) and in their relative difficulty for
each aligner (by-child-by-aligner). To assess the effect of
4 Journal of Speech, Language, and Hearing Research • 1–10
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age, we augmented the model to include age and the inter-
actions of age with other predictors, and we used model
comparison to determine if age significantly improved model
fit over and above the baseline model. Age was centered at
5 years and scaled in years (i.e., Age 0 corresponded to
5 years old and Age 1 corresponded to 6 years old). Addition-
ally, a secondary analysis was performed where we character-
ize phone-onset time differences using descriptive statistics.

Analyses were carried out in R (Version 4.0.0; R Core
Team, 2020) with model fitting by lme4 (Version 1.1.23; Bates
et al., 2015). We report effects with estimated marginal
means and adjusted p values calculated by the emmeans
package (Version 1.4.6; Lenth, 2020). Supplemental Mate-
rial S1 provides the analysis code and results.

Results
We report our findings for each research question

below.
1. What was the accuracy of the aligners relative to

gold-standard manual alignments? Averaging over all speech
sound classes, the Montreal Forced Aligner with speaker
adaptive training (MFA-SAT) was the most accurate aligner,
Average Percent-Accuracy (Acc) = 86%, 95% CI [84, 87],
followed by MFA-No-SAT, Acc = 77%, [75, 79]; Kaldi,
Acc = 76%, [74, 78]; Penn Phonetics Lab Forced Aligner
(P2FA), Acc = 67%, [65, 69]; and Prosodylab, Acc = 61%,
[58, 63]. All pairwise log-odds differences between aligners
were significant (with Bonferroni-adjusted p values) except
for the Kaldi versus MFA-No-SAT contrast, Odds Ratio
(Kaldi/MFA-No-SAT) = 0.98, SE = 0.05, z = −1.26, p =
1.00. Thus, the aligners all performed differently on average,
except for MFA-No-SAT and Kaldi.

2. Which classes of sounds had the most accurate
alignment? How did each aligner perform on each class of
sounds? Averaging over all alignment algorithms, alignment
was more accurate for vowels, Acc = 83%, 95% CI [82, 84],
compared to other speech sound classes: Acc(plosives) =
71%, [69, 72], Acc(fricatives) = 72%, [71, 74], Acc(others)
69%, [67, 71]. All pairwise log-odds differences between clas-
ses were significant (with Bonferroni adjusted p values), but
the overlapping confidence intervals on the percentage scale
suggest that the key contrast here is between vowels and
nonvowels.

Table 2 reports the observed accuracy for each aligner
and class of sound. Nearly all of the Aligner × Class con-
trasts were significant (with false-discovery-rate-adjusted
p values) on the log-odds scale under effect (sum-to-one)
contrast coding. This scheme compared each cell mean (e.g.,
Kaldi × Fricative) to the mean of the 20 Aligner × Class cell
means. Within each aligner, vowels were the most accurate.
For Prosodylab, plosives were the least accurate. For P2FA,
plosives and fricatives were the least accurate. For both
iterations of MFA and for Kaldi, the other-sounds class
was the least accurate.

3. Did children’s ages predict aligner performance? We
augmented the Aligner × Class baseline model to include
age. First, we included age and all two-way interactions
 Terms of Use: https://pubs.asha.org/pubs/rights_and_permissions 
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Figure 1. Example spectrogram and textgrid of alignments for the token “bird house.” The top two tiers of the grid are the manually aligned
words and phones for the utterance, and the lower five tiers are the phone boundaries from the forced aligners. The dashed lines extending
from the manual phones are the midpoints of each phone. In this example, the spectrogram shows mid-to-high frequency noise for the final /s/
sound, and the manual interval for /s/ covers this region. Only the MFA-SAT interval also covers this region, and because it includes the midpoint
of the manual alignment (the dashed line), this automatic alignment matches the manual one. For the vowel in bird, all of the automatic
alignments match the manual alignment. MFA = Montreal Forced Aligner; SAT = speaker adaptive training; P2FA = Penn Phonetics Lab Forced
Aligner.
(Age × Aligner, Aligner × Class), and model comparison
showed a significant improvement in model fit, χ2(8) = 308,
p < .001. Next, we allowed Age × Aligner × Class three-
way interactions, and model comparison showed a signifi-
cant improvement in model fit, χ2(12) = 59, p < .001.

Averaging over all speech sound classes, Kaldi, P2FA,
and MFA-No-SAT showed a significant improvement in
accuracy in age. Odds ratios for a 1-year increase in age
were as follows: OR(MFA-SAT) = 1.03, 95% CI [0.95,
1.12], OR(MFA-No-SAT) = 1.19, [1.10, 1.29], OR(Kaldi) =
1.26, [1.16, 1.37], OR(P2FA) = 1.19, [1.10, 1.29], and OR
(Prosodylab) = 0.96, [0.89, 1.05]. For the aligner with the
largest age-related effect, Kaldi, the estimated expected ac-
curacy was 76% at 5 years old and 80% at 6 years old; hence,
Downloaded from: https://pubs.asha.org Jennifer Soriano on 04/23/2021,
on the percent scale, these improvements were on the or-
der of less than five percentage points in accuracy.

Averaging over all the alignment algorithms, the effect
of age was greatest for fricatives and for other sounds, odds
ratios for a 1-year increase in age: OR(fricatives) = 1.29,
95% CI [1.21, 1.39], OR(others) = 1.15, [1.07, 1.23]. There
was not a statistically significant effect of age for plosives
or vowels, OR(plosives) = 1.06, [0.99, 1.13], OR(vowels) =
1.00, [0.94, 1.07].

Figure 2 shows the estimated alignment accuracy by
age and sound class for each aligner and for the marginal
means across the five alignment algorithms. For each of
the five aligners, the effect of age was greatest for fricatives
compared to all other classes. For MFA-SAT, the only class
Mahr et al.: Forced Alignment of Child Speech 5
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Table 2. Observed percentages of accurate automatic alignments
(i.e., alignment intervals that cover the midpoint of the manual
alignment).

Subset Aligner Accuracy (%)

All sounds (33,545) MFA-SAT 87
MFA-No-SAT 79
Kaldi 77
P2FA 69
Prosodylab 63

Plosives (9,149) MFA-SAT 85
MFA-No-SAT 75
Kaldi 75
P2FA 62
Prosodylab 51

Vowels (13,010) MFA-SAT 90
MFA-No-SAT 87
Kaldi 81
P2FA 76
Prosodylab 77

Fricatives (6,485) MFA-SAT 86
MFA-No-SAT 75
Kaldi 75
P2FA 62
Prosodylab 60

Others (4,901) MFA-SAT 80
MFA-No-SAT 70
Kaldi 72
P2FA 68
Prosodylab 55

Note. MFA = Montreal Forced Aligner; SAT = speaker adaptive
training; P2FA = Penn Phonetics Lab Forced Aligner.
with a significant positive age effect was the fricatives, OR
(fricatives, MFA-SAT) = 1.30, [1.17, 1.45].

4. How did human–human and human–automatic
interrater agreement compare? We measured agreement
between two human aligners on four children. The by-child
percentage of matching intervals between the two was 85%–

96%. For comparison, we computed by-child agreement be-
tween the automatic aligners and the human aligners on
the subset of four children: MFA-SAT 70%–89%, MFA-
No-SAT 59%–78%, Kaldi 60%–80%, P2FA 50%–71%,
Prosodylab 30%–71%. Figure 3 visualizes these agreements
by aligner. The only automatic aligner to overlap with
human aligners was the MFA-SAT aligner. The upper end
of MFA-SAT-to-human raters (89%) overlapped with the
lower end of human-to-human agreement (85%).

5. What was the distribution of phone-onset time differ-
ences for the aligners? Table 3 shows the absolute differences
in phone-onset times between manually aligned intervals and
automatically aligned intervals and the percentages of onset-
time differences under certain tolerances. Three sets of time
differences are included.

First, we examined time differences for all intervals,
including those that did not match the manually aligned
intervals. These times reflect average-case performance. All
aligners had median time differences of less than 30 ms, and
the distributions of the time differences were right-skewed
with the median differences being much smaller than the aver-
age differences: For example, Kaldi showed a median of
6 Journal of Speech, Language, and Hearing Research • 1–10
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20 ms and a mean of 63 ms. This discrepancy occurred be-
cause phone-onset times errors can have cascading effects
on each other: A poor alignment for a word will likely affect
the alignment of subsequent words. MFA-SAT, MFA-
No-SAT, and Kaldi all performed comparably in terms of
median time differences, but Kaldi had more extreme timing
differences (those above 100 ms) so its average time difference
was much larger than its median.

Next, we examined time differences for only the accu-
rate intervals that matched the manually aligned intervals.
These times reflect best-case performance in which the aligner
found the sound in the speech sample. In this set, the aligners
all performed comparably: median time differences of
17–20 ms, mean differences of 26–29 ms, 85%–89% of dif-
ferences smaller than 50 ms. Indeed, the largest difference
among the aligners was in the numbers of intervals tested:
for example, 29,066 for MFA-SAT versus 21,190 for Pro-
sodylab. These results suggest the most important fea-
ture for temporal accuracy was how reliably the aligner
could find the target sound.

To put these time differences into perspective, we also
computed time differences for the interrater agreement
subset of speech samples. For this comparison, one of the
raters, randomly selected, served as the gold standard for the
other rater and for the alignment algorithms. Manual align-
ment yielded much smaller time differences than the forced-
alignment algorithms: A median difference of 10 ms and
72% of differences were smaller than 25 ms. Because the
manual alignment process started by correcting boundaries
on Prosodylab intervals, any boundary that was not ad-
justed by both raters would automatically have a time dif-
ference of 0 ms. Put differently, both raters start with 0-ms
difference on every boundary by default and diverge from
each other by correcting boundaries. Therefore, we checked
what percentage of differences was 0 ms to evaluate whether
human–human interrater agreement was inflated by unad-
justed boundaries: 6.6% for manual intervals, 3.2% for MFA-
SAT, 3.6% for MFA-No-SAT, 3.4% for Kaldi, 0% for
P2FA, and 17.3% for Prosodylab. Unadjusted boundaries
only accounted for 6.6% of differences, and when exclud-
ing these cases, the median difference for human alignment
was 13 ms.

Discussion
In this study, we performed a “bake-off” (an empiri-

cal evaluation of several algorithms) with five different forced-
alignment algorithms on speech samples of 3- to 6-year-old
children. We assessed the accuracy of these aligners by
evaluating whether intervals produced by forced alignment
contained the midpoints of intervals produced by manual
alignment, and we asked whether speech sound class and
child age affected alignment accuracy. We found that the
MFA-SAT (McAuliffe et al., 2017) performed the best over-
all. Vowels were the least difficult class of sound for forced
alignment, and age had the largest effect on accuracy for
the fricatives. Finally, for accurately aligned sounds, phone-
onset time differences were comparable across aligners.
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Figure 2. Estimated alignment accuracy by sound class by age for the five alignment algorithms and the marginal average over the five aligners.
Lines represent the estimated population-average (fixed-effects) accuracy. Points represent the average accuracy for the classes of sounds for
each child, so one point represents one child’s accuracy for that sound class. Several key findings are visible here: (a) MFA-SAT was the most
accurate overall; all of its age-trend lines are above 75%. (b) Vowels were the most accurately aligned sounds; the topmost age-trend line in
each panel is the vowel line. (c) Fricatives were the sound class most affected by age: In every panel, there is a positive slope for the fricative
age-trend line. The letters v, f, p, o are included to label the sound class for each line. MFA = Montreal Forced Aligner; SAT = speaker adaptive
training; P2FA = Penn Phonetics Lab Forced Aligner.
Why did MFA-SAT perform the best overall? Broadly
speaking, we found three different tiers of aligner algorithms
in terms of average overall accuracy: MFA-SAT performed
best with 86% accuracy, followed by MFA-No-SAT and
Kaldi with approximately 77% accuracy, followed by P2FA
and Prosodylab with less than 70% accuracy. We can inter-
pret these tier differences in terms of underlying alignment
technology. P2FA and Prosodylab perform alignment at the
monophone level, and their acoustic models were trained
Downloaded from: https://pubs.asha.org Jennifer Soriano on 04/23/2021,
on smaller corpora of adult speech (25 hr or less). Kaldi
and both MFA types perform alignment at the triphone
level, and their acoustic models were trained on a 1,000-hr
corpus of adult-read speech. The combination of contextual
variation (with triphone alignment) and a richer acoustic
model may make these aligners perform a step above the
Prosodylab and P2FA aligners. The large performance gain
in MFA-SAT over Kaldi and MFA-No-SAT can be attrib-
uted specifically to speaker adaptive training. Although the
Mahr et al.: Forced Alignment of Child Speech 7
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Figure 3. Percent agreement between automatic forced-alignment algorithms and human aligners. Each point represents the percentage of
agreement for an alignment algorithm and a human aligner for one child. Points are colored to uniquely identify children. There were two
human aligners, so each child appears twice per row (two points of same color). Vertical bar marks the median in that row. Ages in months
were 39 (blue circles), 40 (green squares), 52 (orange diamonds), and 66 (red triangles). MFA = Montreal Forced Aligner; SAT = speaker adaptive
training; P2FA = Penn Phonetics Lab Forced Aligner.
acoustic model for MFA-SAT was trained on adult speech,
speaker adaptation appeared to allow the aligner to normal-
ize or adjust for developmental differences in children.

The architectural differences between aligners also
help explain differences among aligners for different classes
Table 3. Percentages of absolute phone-onset differences under various t

Set Aligner
No. of

intervals

Differenc

Median

All intervals MFA-SAT 33,545 20
MFA-No-SAT 33,545 20
Kaldi 33,545 20
P2FA 33,545 25
Prosodylab 33,545 28

Only accurate intervals MFA-SAT 29,066 18
MFA-No-SAT 26,471 17
Kaldi 25,871 17
P2FA 23,019 19
Prosodylab 21,190 20

All intervals from interrater
reliability subset

Manual 2,215 10
MFA-SAT 2,215 20
MFA-No-SAT 2,215 24
Kaldi 2,215 26
P2FA 2,215 28
Prosodylab 2,215 30

Note. MFA = Montreal Forced Aligner; SAT = speaker adaptive training; P
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of sounds. The triphone aligners (Kaldi and MFA) can in-
corporate contextual information into their acoustic models.
Plosives show reliable positional variation (e.g., aspiration
or unreleased closure), but the lack of contextual informa-
tion in monophone aligners (P2FA, Prosodylab) would make
olerances.

es in onset times (ms) Percent differences

IQR M < 25 ms < 50 ms < 100 ms

31 35 60 85 95
32 42 57 81 92
35 63 55 77 87
44 56 50 73 86
44 56 46 74 86
27 26 64 89 98
25 26 64 89 97
25 28 64 88 96
25 28 62 87 97
38 29 58 85 96
26 26 72 85 94
31 34 56 84 95
37 48 51 77 89
54 91 49 71 81
54 62 46 69 82
45 64 42 72 85

2FA = Penn Phonetics Lab Forced Aligner.
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these sounds more difficult. Plosive sounds were among the
most difficult classes for these two aligners.

In what situations is forced alignment most reliable for
child speech? Vowels on average had the most accurate align-
ments, and fricative accuracy was most strongly affected
by age. Intuitively, this finding makes sense as vowels can
be parameterized using formants, whereas fricative proper-
ties span the spectrum. Said another way, the speaker has
additional degrees of freedom when producing fricatives;
therefore, their spectral signatures are more variable. It is
clear from the results that this variability cannot be readily
normalized away with speaker adaptation. Another possible
reason for the age-fricative relationship is that children also
show considerable anatomical and articulatory development
during the age range of this study. Additionally, fricative
sounds are also those that are most sensitive to noise during
the recording process, although we do not expect that this
played a large role in our analyses because the recording
conditions were well controlled.

Age of acquisition norms can help explain some of the
effects of age on alignment accuracy. Averaging over the
aligners, age did not influence alignment accuracy for vowels
or plosives. These sounds have simpler motor demands that
support earlier acquisition (Kent, 1992). For example, the re-
view of consonant acquisition by McLeod and Crowe (2018)
puts the average age of acquisition (75%–85% correctly pro-
duced) for plosive sounds /p,b,d,b,k,g/ (i.e., all but /t/) at
2 years of age but fricatives are acquired over the full 2- to
6-year age range. A related consideration, though open to
further empirical work, is that these aligners do not know
what children sound like. Because they are trained on adult
corpora, the acoustic models are not familiar with common
child articulatory strategies (stopping fricatives, gliding liquids,
etc.). Alignment accuracy for fricatives increased with age be-
cause children started to develop more adult-like productions.

Differences in phone-onset times were consistent across
the five aligners on accurately aligned intervals. Therefore,
the key problem for forced alignment is accuracy; that is,
finding where the sound occurs in a speech sample. Onset-
time differences were smaller for human–human differences
(around 10 ms) compared to human–manual time differ-
ences (around 20 ms), but this result is expected. The human
aligners received laboratory training with check-ins on
protocol drift (i.e., meetings to make sure human aligners
were using the same rules or heuristics during alignment).
Minimizing human–human differences is an ongoing concern
in multirater research designs, but this kind of retuning or re-
calibration is not part of the automatic alignment workflow.

This work provides a target against which speech tech-
nologists can evaluate the performance of their child speech
alignment algorithms. The current aligners perform well on
child speech, but not on par with forced-alignment algorithms
on adult speech or with the gold-standard human labels. On
adult speech benchmarks, the best performing aligner
(MFA-SAT) had 72%–77% of phone boundaries within
25 ms of gold-standard boundaries with median absolute
time differences of approximately 11 ms (McAuliffe et al.,
2017). For this set of child speech, we found 58% of onset
Downloaded from: https://pubs.asha.org Jennifer Soriano on 04/23/2021,
boundaries were within 25 ms of the gold standard with a
median time difference of 21 ms for the same aligner. Im-
portantly, this result does not suggest that forced alignment
should not be used in research done on child speech. The
paper provides an estimate of expected accuracy and timing
errors by sound class and age.

We have two suggestions for how to use forced-
alignment algorithms. First, forced alignment can be used
as part of a semi-automated workflow where intervals are
first set automatically and then later manually corrected.
For instance, a variation of this workflow was used by Stuart-
Smith et al. (2015) where automatic voice onset time mea-
surements were screened as correct, correctable (then cor-
rected), or not usable (due to large error or noise, etc.). They
report an efficiency of 1 min of annotation time per 1 min
of speech time. Our phone-class results then set a priority
list for correction: Vowels will likely need less correction,
but fricatives in younger children will need more attention.
Second, researchers using forced alignment for child speech
statistically control for accuracy and timing errors in their
statistical models to ensure that their findings are not con-
founded by these variables. This approach might become
more important when a data set grows too large for the
semi-automated workflow. Both of these workflows, how-
ever, would benefit if aligners also generated scores for the
confidence of the phone alignments or provided other diag-
nostics (e.g., Baghai-Ravary et al., 2011) that can indicate
whether an alignment interval might need further review
(or exclusion) in downstream analyses.

Limitations and Future Directions
There are two key limitations of this study. First, we

only used the aligners in their default configuration and with
their adult-trained acoustic models. Therefore, these results
set a lower bound on alignment performance on child speech.
All of the aligners except P2FA support the training of new
acoustic models, so training on a child speech corpus or a
mixed adult–child speech corpus can improve alignment
performance. Indeed, Knowles et al. (2018) found that retrain-
ing on child speech provided a substantial increase in align-
ment accuracy for the Prosodylab-Aligner. Other strategies
may improve alignment performance: training separate
models for different age ranges or normalizing child speech
with preprocessing before alignment. These avenues require
further research and experimentation.

The other main limitation of these results is that we
tested the aligners on high-quality child speech data. They
were recorded in a well-controlled environment as part of a
picture-prompted word and sentence repetition task; hence,
environmental noise and articulatory–linguistic variability
were minimized. We have not tested aligners on longer sam-
ples or samples of spontaneous or conversational speech.
We would expect MFA-SAT to perform the best in such sit-
uations, based on our results, but we are hesitant to extrapo-
late beyond elicited laboratory speech.

Methodologically, our gold-standard manual align-
ments were created by correcting alignments produced by
Mahr et al.: Forced Alignment of Child Speech 9
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the Prosodylab-Aligner. A purer approach, albeit more time
consuming, would have started with randomly placed bound-
aries. The present workflow, though efficient, biased time
differences toward the Prosodylab-Aligner, but only for the
smallest differences. Any boundary not adjusted manually
had an onset-time difference of 0 ms, so the number of 0-ms
differences was inflated compared to the number of 1- to
10-ms differences. For example, 19% of Prosodylab differ-
ences and 4% of MFA-SAT differences were equal to 0 ms,
but 6% of Prosodylab differences and 21% of MFA-SAT
differences were between 1 and 10 ms.

Our results provide a snapshot of the state of the art
in forced-alignment algorithms, but with ever-improving
technological developments, these results will require updat-
ing. It is impressive that the accuracy of the best-performing
aligner approached that of human–human agreement on
an interrater reliability probe. This result suggests that, as
the sizes of publicly available corpora grow and new tech-
nology is developed, it will not be long before the state-of-
the-art aligner will bridge this gap, at least on simple speech
elicitation tasks (e.g., prompting, repetition) or on subsets of
phonemes (e.g., vowels).
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